[ad_1]
FAO. in FAO International Forest Useful resource Evaluation 2015 105 pp. (FAO, 2015).
Valdés, A. et al. Excessive ecosystem service supply potential of small woodlands in agricultural landscapes. J. Appl. Ecol. 57, 4–16 (2020).
Google Scholar
Hertzog, L. R. et al. Forest fragmentation modulates results of tree species richness and composition on ecosystem multifunctionality. Ecology 100, e02653 (2019).
Google Scholar
Meeussen, C. et al. Microclimatic edge-to-interior gradients of European deciduous forests. Agric. Meteorol. 311, 108699 (2021).
Google Scholar
Schmidt, M., Jochheim, H., Kersebaum, Ok. C., Lischeid, G. & Nendel, C. Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes—a assessment. Agric. Meteorol. 232, 659–671 (2017).
Google Scholar
Remy, E., Wuyts, Ok., Boeckx, P., Gundersen, P. & Verheyen, Ok. Edge results in temperate forests subjected to excessive nitrogen deposition. Proc. Natl Acad. Sci. USA 114, E7032 (2017).
Google Scholar
Pfeifer, M. et al. Creation of forest edges has a world affect on forest vertebrates. Nature 551, 187–191 (2017).
Google Scholar
Taubert, F. et al. International patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).
Google Scholar
Haddad, N. M. et al. Habitat fragmentation and its lasting affect on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).
Google Scholar
Riitters, Ok., Wickham, J., Costanza, J. Ok. & Vogt, P. A world analysis of forest inside space dynamics utilizing tree cowl knowledge from 2000 to 2012. Landsc. Ecol. 31, 137–148 (2016).
Google Scholar
Estreguil, C., Caudullo, G., de Rigo, D. & San-Miguel-Ayanz, J. Forest Panorama in Europe: Sample, Fragmentation and Connectivity EUR 25717 (Publications Workplace of the European Union, 2012).
Shapiro, A. C., Aguilar-Amuchastegui, N., Hostert, P. & Bastin, J. F. Utilizing fragmentation to evaluate degradation of forest edges in Democratic Republic of Congo. Carbon Stability Manag. 11, 11 (2016).
Landuyt, D. et al. The practical function of temperate forest understorey vegetation in a altering world. Glob. Change Biol. 25, 3625–3641 (2019).
Google Scholar
Thrippleton, T., Bugmann, H., Folini, M. & Snell, R. S. Overstorey–understorey interactions intensify after drought-induced forest die-off: long-term results for forest construction and composition. Ecosystems 21, 723–739 (2018).
Google Scholar
Chastain, R. A. Jr, Currie, W. S. & Townsend, P. A. Carbon sequestration and nutrient biking implications of the evergreen understory layer in Appalachian forests. For. Ecol. Manag. 231, 63–77 (2006).
Google Scholar
De Lombaerde, E. et al. Understorey removing results on tree regeneration in temperate forests: a meta‐evaluation. J. Appl. Ecol. 58, 9–20 (2021).
Google Scholar
Perring, M. P. et al. Understanding context dependency within the response of forest understorey plant communities to nitrogen deposition. Environ. Pollut. 242, 1787–1799 (2018).
Google Scholar
Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).
Google Scholar
Le Bagousse-Pinguet, Y. et al. Phylogenetic, practical, and taxonomic richness have each optimistic and unfavourable results on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).
Google Scholar
van der Plas, F. et al. Jack-of-all-trades results drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat. Commun. 7, 11109 (2016).
Calders, Ok. et al. Nondestructive estimates of above‐floor biomass utilizing terrestrial laser scanning. Strategies Ecol. Evol. 6, 198–208 (2015).
Google Scholar
Thompson, P. L. & Gonzalez, A. Ecosystem multifunctionality in metacommunities. Ecology 97, 2867–2879 (2016).
Google Scholar
Gough, C. M., Atkins, J. W., Fahey, R. T. & Hardiman, B. S. Excessive charges of major manufacturing in structurally complicated forests. Ecology 100, e02864 (2019).
Google Scholar
Penone, C. et al. Specialisation and variety of a number of trophic teams are promoted by totally different forest options. Ecol. Lett. 22, 170–180 (2019).
Google Scholar
Ehbrecht, M. et al. International patterns and climatic controls of forest structural complexity. Nat. Commun. 12, 519 (2021).
Karger, D. N., Nobis, M. P., Normand, S., Graham, C. H., & Zimmermann, N. E. CHELSA-TraCE21k v1. 0. Downscaled transient temperature and precipitation knowledge for the reason that Final Glacial Most. Clim. Previous. 19, 439–456 (2023).
Brus, D. J. et al. Statistical mapping of tree species over Europe. Eur. J. For. Res. 131, 145–157 (2012).
Google Scholar
Govaert, S. et al. Edge affect on understorey plant communities relies on forest administration. J. Veg. Sci. 31, 281–292 (2020).
Google Scholar
Meeussen, C. et al. Structural variation of forest edges throughout Europe. For. Ecol. Manag. 462, 117929 (2020).
Google Scholar
De Pauw, Ok. et al. Taxonomic, phylogenetic and practical range of understorey vegetation reply otherwise to environmental circumstances in European forest edges. J. Ecol. 109, 2629–2648 (2021).
Google Scholar
Heinken, T. et al. The European Forest Plant Species Checklist (EuForPlant): idea and purposes. J. Veg. Sci. 33, e13132 (2022).
Google Scholar
Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).
Google Scholar
Laliberté, E. & Legendre, P. A distance‐primarily based framework for measuring practical range from a number of traits. Ecology 91, 299–305 (2010).
Google Scholar
Meeussen, C. et al. Drivers of carbon shares in forest edges throughout Europe. Sci. Complete Environ. 759, 143497 (2021).
Google Scholar
Tyler, T., Herbertsson, L., Olofsson, J. & Olsson, P. A. Ecological indicator and traits values for Swedish vascular vegetation. Ecol. Indic. 120, 106923 (2021).
Google Scholar
De Frenne, P. et al. International buffering of temperatures beneath forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).
Google Scholar
Zellweger, F. et al. Seasonal drivers of understorey temperature buffering in temperate deciduous forests throughout Europe. Glob. Ecol. Biogeogr. 28, 1774–1786 (2019).
Google Scholar
Xu, S., Sardans, J., Zhang, J. & Peñuelas, J. Variations in foliar carbon: nitrogen and nitrogen: phosphorus ratios beneath international change: a meta-analysis of experimental area research. Sci. Rep. 10, 12156 (2020).
Google Scholar
Chen, X. & Chen, H. Y. Plant combination balances terrestrial ecosystem C:N:P stoichiometry. Nat. Commun. 12, 4562 (2021).
Google Scholar
Muller, R. N. in The Herbaceous Layer in Forests of Japanese North America (ed. Gilliam, F.) Ch. 2 (Oxford College Press, 2014).
Mabry, C. M., Gerken, M. E. & Thompson, J. R. Seasonal storage of vitamins by perennial herbaceous species in undisturbed and disturbed deciduous hardwood forests. Appl. Veg. Sci. 11, 37–44 (2008).
Google Scholar
Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. Nationwide-scale biomass estimators for United States tree species. For. Sci. 49, 12–35 (2003).
Dzwonko, Z. & Gawroński, S. Impact of litter removing on species richness and acidification of a combined oak-pine woodland. Biol. Conserv. 106, 389–398 (2002).
Google Scholar
Verheyen, Ok. et al. Driving components behind the eutrophication sign in understorey plant communities of deciduous temperate forests. J. Ecol. 100, 352–365 (2012).
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial decision local weather surfaces for international land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Huey, R. B. et al. Predicting organismal vulnerability to local weather warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).
Google Scholar
Hansen, M. C. et al. Excessive-resolution international maps of Twenty first-century forest cowl change. Science 342, 850–853 (2013).
Google Scholar
Beguería, S. and Vicente-Serrano, S. M. SPEI: calculation of the Standardised Precipitation-Evapotranspiration Index. R bundle model 1.7. R Undertaking https://CRAN.R-project.org/bundle=SPEI (2017).
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Model 4 of the CRU TS month-to-month high-resolution gridded multivariate local weather dataset. Sci. Knowledge 7, 109 (2020).
Sousa‐Silva, R. et al. Tree range mitigates defoliation after a drought‐induced tipping level. Glob. Change Biol. 24, 4304–4315 (2018).
Google Scholar
Grossiord, C. et al. Tree range doesn’t all the time enhance resistance of forest ecosystems to drought. Proc. Natl Acad. Sci. USA 111, 14812–14815 (2014).
Google Scholar
Guada, G., Camarero, J. J., Sánchez-Salguero, R. & Cerrillo, R. M. N. Restricted progress restoration after drought-induced forest dieback in very defoliated bushes of two pine species. Entrance. Plant Sci. 7, 418 (2016).
Google Scholar
Isbell, F. et al. Excessive plant range is required to take care of ecosystem companies. Nature 477, 199–202 (2011).
Google Scholar
Wuyts, Ok. et al. Comparability of forest edge results on throughfall deposition in numerous forest varieties. Environ. Pollut. 156, 854–861 (2008).
Google Scholar
R Core Workforce. R: a language and atmosphere for statistical computing. R Basis for Statistical Computing, Vienna, Austria. R Undertaking https://www.R-project.org/ (2021).
Vanneste, T. Commerce-offs in biodiversity and ecosystem companies between edges and interiors in European forests. figshare https://doi.org/10.6084/m9.figshare.24559891.v3 (2023).
Bürkner, P.-C. brms: an R bundle for Bayesian multilevel fashions utilizing Stan. J. Stat. Softw. 80, 1–28 (2017).
Google Scholar
Bürkner, P.-C. Bayesian merchandise response modeling in R with brms and Stan. J. Stat. Softw. 100, 1–54 (2021).
Google Scholar
Fox, J. & Weisberg, S. An R Companion to Utilized Regression third edn (Sage Publications, 2019).
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Blended Results Fashions and Extensions in Ecology with R Vol. 574 (Springer, 2009).
Gabry, J. & Mahr, T. bayesplot: plotting Bayesian fashions. R bundle model 1.8.1. bayesplot https://mc-stan.org/bayesplot/ (2021).
Gelman, A. & Rubin, D. B. Inference from iterative simulation utilizing a number of sequences. Stat. Sci. 7, 457–472 (1992).
Google Scholar
Slade, E. M. et al. The significance of species id and interactions for multifunctionality relies on how ecosystem features are valued. Ecology 98, 2626–2639 (2017).
Google Scholar
[ad_2]
Source link