[ad_1]
Eittreim, S. L. & Ewing, J. Mid-plate tectonics within the Indian Ocean. J. Geophys. Res. 77, 6413–6421 (1972).
Google Scholar
Phillips, H. E. et al. Progress in understanding of Indian Ocean circulation, variability, air–sea alternate, and impacts on biogeochemistry. Ocean Sci. 17, 1677–1751 (2021).
Google Scholar
Hood, R. R., Beckley, L. E. & Wiggert, J. D. Biogeochemical and ecological impacts of boundary currents within the Indian Ocean. Progress in Oceanography. 156, 290–325 (2017).
Google Scholar
Saji, N. H. & Yamagata, T. Doable impacts of Indian Ocean Dipole mode occasions on world local weather. Local weather Analysis. 25, 151–169 (2003).
Google Scholar
Zinke, J. et al. Western Indian Ocean marine and terrestrial information of local weather variability: a assessment and new ideas on land–ocean interactions since AD 1660. Int J Earth Sci. 98, 115–133 (2009).
Google Scholar
Larkin, A. A. et al. Delicate biogeochemical regimes within the Indian Ocean revealed by spatial and diel frequency of Prochlorococcus haplotypes. Limnol Oceanogr. 65, S220–S232 (2019).
Grand, M. M. et al. Mud deposition within the japanese Indian Ocean: The ocean perspective from Antarctica to the Bay of Bengal. World Biogeochem Cy. 29, 357–374 (2015).
Google Scholar
Liao, J. et al. Microdiversity of the vaginal microbiome is related to preterm start. Nat Commun. 14, 4997 (2023).
Google Scholar
Howden, S. D. & Murtugudde, R. Results of river inputs into the Bay of Bengal. J. Geophys. Res. 106, 19825–19843 (2001).
Google Scholar
Kumar, M. D. et al. A sink for atmospheric carbon dioxide within the northeast Indian Ocean. J. Geophys. Res. 101, 18121–18125 (1996).
Google Scholar
Bikkina, S. & Sarin, M. M. Atmospheric deposition of phosphorus to the Northern Indian Ocean. Curr. Sci. 108, 1300–1305 (2015).
Rixen, T. et al. Evaluations and syntheses: Current, previous, and way forward for the oxygen minimal zone within the northern Indian Ocean. Biogeosciences. 17, 6051–6080 (2020).
Google Scholar
Fernandes, G. L., Shenoy, B. D. & Damare, S. R. Variety of Bacterial Neighborhood within the Oxygen Minimal Zones of Arabian Sea and Bay of Bengal as Deduced by Illumina Sequencing. Entrance Microbiol. 10, 3153 (2019).
Google Scholar
Cui, W. et al. Statistical traits and thermohaline properties of mesoscale eddies within the Bay of Bengal. Acta Oceanol. Sin. 40, 10–22 (2021).
Google Scholar
Mandar, S. P. et al. Microbial range of the Arabian Sea within the Oxygen minimal zones by metagenomics method. Curr Sci. 118, 1042–1051 (2020).
Dlugosch, L. et al. Significance of gene variants for the practical biogeography of the near-surface Atlantic Ocean microbiome. Nat Commun. 13, 456 (2022).
Google Scholar
Kirchman, D. L. Development Charges of Microbes within the Oceans. Annu Rev Mar Sci. 8, 285–309 (2016).
Google Scholar
Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic charges derived from satellite-based chlorophyll focus. Limnol. Oceanogr. 42, 1–20 (1997).
Google Scholar
Flombaum, P. et al. Current and future world distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. USA 110, 9824–9829 (2013).
Google Scholar
Lengthy, M. C., Deutsch, C. & Ito, T. Discovering compelled developments in oceanic oxygen. World Biogeochem Cy. 30, 381–397 (2016).
Google Scholar
Glock, N. et al. Metabolic choice of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimal zone. Proc. Natl. Acad. Sci. USA 116, 2860–2865 (2019).
Google Scholar
Canfield, D. E. & Kraft, B. The ‘oxygen’ in oxygen minimal zones. Environ Microbiol. 24, 5332–5344 (2022).
Google Scholar
Galloway, J. N. et al. Nitrogen Cycles: Previous, Current, and Future. Biogeochemistry. 70, 153–226 (2004).
Google Scholar
Codispoti, L. A. et al. The oceanic mounted nitrogen and nitrous oxide budgets: Shifting targets as we enter the anthropocene? Sci Mar. 65, 85–105 (2007).
De Brabandere, L. et al. Vertical partitioning of nitrogen-loss processes throughout the oxic-anoxic interface of an oceanic oxygen minimal zone. Environ Microbiol. 16, 3041–3054 (2014).
Google Scholar
Ding, C. et al. The Composition and Main Metabolic Potential of Microbial Communities Inhabiting the Floor Water within the Equatorial Japanese Indian Ocean. Biology (Basel). 10, (2021).
Ding, C. et al. Comparability of Diazotrophic Composition and Distribution within the South China Sea and the Western Pacific Ocean. Biology (Basel). 10, 248 (2021).
Google Scholar
Bowers, R. M. et al. Minimal details about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of micro organism and archaea. Nat Biotechnol. 35, 725–731 (2017).
Google Scholar
Nishimura, Y. et al. The OceanDNA MAG catalog comprises over 50,000 prokaryotic genomes originated from varied marine environments. Sci Knowledge. 9, 305 (2022).
Google Scholar
Paoli, L. et al. Biosynthetic potential of the worldwide ocean microbiome. Nature. 607, 111–118 (2022).
Google Scholar
Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal range by a phylogenetically constant, rank normalized and full genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).
Google Scholar
Haro-Moreno, J. et al. New insights into marine group III Euryarchaeota, from darkish to gentle. ISME J. 11, 1102–1117 (2017).
Google Scholar
Dafner, E. V. Segmented continuous-flow analyses of nutrient in seawater: intralaboratory comparability of Technicon AutoAnalyzer II and Bran+Luebbe Steady Circulation AutoAnalyzer III. Limnol. Oceanogr. Strategies. 13, 511–520 (2015).
Xia, X. et al. Uncommon micro organism in seawater are dominant within the bacterial assemblage related to the Bloom-forming dinoflagellate Noctiluca scintillans. Sci Whole Environ. 711, 135107 (2020).
Google Scholar
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Each base issues: assessing small subunit rRNA primers for marine microbiomes with mock communities, time sequence and world subject samples. Environ Microbiol. 18, 1403–14 (2016).
Google Scholar
Milke, F. et al. Choice, drift and neighborhood interactions form microbial biogeographic patterns within the Pacific Ocean. ISME J. (2022).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome information science utilizing QIIME 2. Nat Biotechnol. 37, 852–857 (2019).
Google Scholar
Amir, A. et al. Deblur Quickly Resolves Single-Nucleotide Neighborhood Sequence Patterns. mSystems. 2, e00191–16 (2017).
Google Scholar
Chen, S. et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 34, i884–i890 (2018).
Google Scholar
Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a versatile pipeline for genome-resolved metagenomic information evaluation. Microbiome. 6, 158 (2018).
Google Scholar
Li, D. et al. MEGAHIT: an ultra-fast single-node answer for big and complicated metagenomics meeting through succinct de Bruijn graph. Bioinformatics. 31, 1674–6 (2015).
Google Scholar
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation web site identification. BMC Bioinformatics 11, 119 (2010).
Google Scholar
Fu, L. et al. CD-HIT: accelerated for clustering the next-generation sequencing information. Bioinformatics. 28(23), 3150–3152 (2012).
Google Scholar
Li, H. et al. Quick and correct long-read alignment with Burrows–Wheeler rework. Bioinformatics. 26, 589–595 (2010).
Google Scholar
Aramaki, T. et al. KofamKOALA: KEGG ortholog project primarily based on profile HMM and adaptive rating threshold. Bioinformatics. 36, 2251–2252 (2019).
Google Scholar
Wu, Y.-W. et al. MaxBin: an automatic binning methodology to recuperate particular person genomes from metagenomes utilizing an expectation-maximization algorithm. Microbiome. 2, 26 (2014).
Google Scholar
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for sturdy and environment friendly genome reconstruction from metagenome assemblies. PeerJ. 7, e7359 (2019).
Google Scholar
Alneberg, J. et al. Binning metagenomic contigs by protection and composition. Nat Strategies. 11, 1144–6 (2014).
Google Scholar
Ondov, B. D. et al. sourmash: a library for MinHash sketching of DNA. Journal of Open Supply Software program. (2016).
Yu, Okay. et al. Restoration of high-qualitied Genomes from a deep-inland Salt Lake Utilizing BASALT. Preprint at https://www.biorxiv.org/content material/10.1101/2021.03.05.434042v2 (2021).
Olm, M. R. et al. dRep: a device for quick and correct genomic comparisons that allows improved genome restoration from metagenomes by de-replication. ISME J. 11, 2864–2868 (2017).
Google Scholar
Chklovski, A. et al. CheckM2: a fast, scalable and correct device for assessing microbial genome high quality utilizing machine studying. Nat Strategies. 20, 1203–1212 (2023).
Google Scholar
Chaumeil, P. A. et al. GTDB-Tk v2: reminiscence pleasant classification with the genome taxonomy database. Bioinformatics. 38, 5315–5316 (2022).
Google Scholar
Seemann, T. Prokka: fast prokaryotic genome annotation. Bioinformatics. 30(14), 2068–9 (2014).
Google Scholar
Edgar, R. C. Muscle5: Excessive-accuracy alignment ensembles allow unbiased assessments of sequence homology and phylogeny. Nat Commun. 13, 6968 (2022).
Google Scholar
Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a brand new software program for choice of phylogenetic informative areas from a number of sequence alignments. BMC Evolutionary Biology. 10, 210 (2010).
Google Scholar
Nguyen, L. T. et al. IQ-TREE: a quick and efficient stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32, 268–74 (2015).
Google Scholar
Kalyaanamoorthy, S. et al. ModelFinder: quick mannequin choice for correct phylogenetic estimates. Nat Strategies. 14, 587–589 (2017).
Google Scholar
NCBI BioProject. https://identifiers.org/ncbi/bioproject:PRJNA1031568 (2023).
NCBI Sequence Learn Archive. https://identifiers.org/ncbi/insdc.sra:SRP468222 (2023).
Wang, X. M. Northeast Indian Ocean metagenomic dataset. Figshare https://doi.org/10.6084/m9.figshare.24314026.v2 (2023).
[ad_2]
Source link