[ad_1]
Newbold, T. et al. International results of land use on native terrestrial biodiversity. Nature 520, 45–50. https://doi.org/10.1038/nature14324 (2015).
Google Scholar
Sánchez-Bayo, F. & Wyckhuys, Ok. A. G. Worldwide decline of the entomofauna: A overview of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).
Google Scholar
Goulson, D. The insect apocalypse, and why it issues. Curr. Biol. 29, R967–R971. https://doi.org/10.1016/j.cub.2019.06.069 (2019).
Google Scholar
Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and local weather change are reshaping insect biodiversity worldwide. Nature 605, 97–102. https://doi.org/10.1038/s41586-022-04644-x (2022).
Google Scholar
Eggleton, P. The state of the world’s bugs. Ann. Rev. Env. Resourc. 45, 61–82. https://doi.org/10.1146/annurev-environ-012420-050035 (2020).
Google Scholar
Potts, S. G. et al. International pollinator declines: Tendencies, impacts and drivers. TREE 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).
Google Scholar
Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53, 191–208. https://doi.org/10.1146/annurev.ento.53.103106.093454 (2007).
Google Scholar
Matthews, R. W. & Matthews, J. R. Malaise traps: The Townes mannequin catches extra bugs. Am. Entomol. Inst. 20, 428–432 (1983).
Leather-based, S. R. Insect Sampling in Forest Ecosystems (Wiley-Blackwell, 2008).
Grootaert, P., Pollet, M., Dekoninck, W. & van Achterberg, C. Sampling bugs: Normal methods, methods and remarks. In Guide on Subject Recording Strategies and Protocols for All Taxa Biodiversity Inventories and Monitoring (eds. Eymann, J. et al.) 337–399 (Abc Taxa, 2010).
Hallmann, C. A. et al. Greater than 75 p.c decline over 27 years in whole flying insect biomass in protected areas. Plos One 2017, 12. https://doi.org/10.1371/journal.pone.0185809 (2017).
Google Scholar
Baxter, C. V., Fausch, Ok. D. & Saunders, W. C. Tangled webs: Reciprocal flows of invertebrate prey hyperlink streams and riparian zones. Freshw. Biol. 50, 201–220. https://doi.org/10.1111/j.1365-2427.2004.01328.x (2005).
Google Scholar
Fijen, T. P. M. et al. Insect pollination is at the very least as essential for marketable crop yield as plant high quality in a seed crop. Ecol. Lett. 21, 1704–1713. https://doi.org/10.1111/ele.13150 (2018).
Google Scholar
Losey, J. E. & Vaughan, M. The financial worth of ecological companies supplied by bugs. Bioscience 56, 311–323. https://doi.org/10.1641/0006-3568(2006)56[311:tevoes]2.0.co;2 (2006).
Google Scholar
Schmitz, O. J. & Leroux, S. J. Meals webs and ecosystems: Linking species interactions to the carbon cycle. Ann. Rev. Ecol. Evol. Syst. 51, 271–295. https://doi.org/10.1146/annurev-ecolsys-011720-104730 (2020).
Google Scholar
Pomfret, J. Ok., Nocera, J. J., Kyser, T. Ok. & Reudink, M. W. Linking inhabitants declines with weight loss program high quality in Vaux’s swifts. Northwest Sci. 88, 305–313. https://doi.org/10.3955/046.088.0405 (2012).
Google Scholar
Tallamy, D. W. & Shriver, W. G. Are declines in bugs and insectivorous birds associated?. Ornithol. App. 123, duaa059. https://doi.org/10.1093/ornithapp/duaa059 (2021).
Google Scholar
Simmons, N. B. & Cirranello, A. L. Bat Species of The World: A Taxonomic And Geographic Database. https://batnames.org (2020).
Fenton, M. B. The foraging behaviour and ecology of animal-eating bats. Can. J. Zool. 68, 411–422 (1989).
Google Scholar
Safi, Ok. & Kerth, G. A comparative evaluation of specialization and extinction danger in temperate-zone bats. Conserv. Biol. 18, 1293–1303 (2004).
Google Scholar
Bernard, E. & Fenton, M. B. Bat mobility and roosts in a fragmented panorama in central Amazonia, Brazil. Biotropica 35, 262–277 (2003).
Aizpurua, O. et al. Agriculture shapes the trophic area of interest of a bat preying on a number of pest arthropods throughout Europe: Proof from DNA metabarcoding. Mol. Ecol. 27, 815–825. https://doi.org/10.1111/mec.14474 (2018).
Google Scholar
Cleveland, C. J. et al. Financial worth of the pest management service supplied by Brazilian free-tailed bats in south-central Texas. Entrance. Ecol. Environ. 5, 238–243 (2006).
Google Scholar
Lee, Y.-F. & McCracken, G. F. Dietary variation of Brazilian free-tailed bats hyperlinks to migratory populations of pest bugs. J. Mammal. 86, 67–76. https://doi.org/10.1644/1545-1542(2005)086percent3c0067:DVOBFBpercent3e2.0.CO;2 (2005).
Google Scholar
Safi, Ok. & Kerth, G. Comparative analyses counsel that data switch promoted sociality in male bats within the temperate zone. Am. Nat. 170, 465–472. https://doi.org/10.1086/520116 (2007).
Google Scholar
Wilson, J. D., Morris, A. J., Arroyo, B. E., Clark, S. C. & Bradbury, R. B. A overview of the abundance and variety of invertebrate and plant meals of granivorous birds in northern Europe in relation to agricultural change. Agricult. Ecosyst. Env. 75, 13–30. https://doi.org/10.1016/S0167-8809(99)00064-X (1999).
Google Scholar
Billeter, R. et al. Indicators for biodiversity in agricultural landscapes: A pan-European examine. J. Appl. Ecol. 45, 141–150. https://doi.org/10.1111/j.1365-2664.2007.01393.x (2008).
Google Scholar
Hadrava, J. et al. A comparability of untamed bee communities in sown flower strips and semi-natural habitats: A pollination community method. Insect. Conserv. Divers. 15, 312–324. https://doi.org/10.1111/icad.12565 (2022).
Google Scholar
Wesche, Ok., Krause, B., Culmsee, H. & Leuschner, C. Fifty years of change in Central European grassland vegetation: Giant losses in species richness and animal-pollinated crops. Biol. Conserv. 150, 76–85. https://doi.org/10.1016/j.biocon.2012.02.015 (2012).
Google Scholar
Boonman, A., Fenton, B. & Yovel, Y. The advantages of insect-swarm looking to echolocating bats, and its affect on the evolution of bat echolocation indicators. PLoS Comp. I Biol. 15, e1006873 (2019).
Google Scholar
Ruczyński, I., Hałat, Z., Zegarek, M., Borowik, T. & Dechmann, D. Ok. N. Digital camera transects as a way to watch excessive temporal and spatial ephemerality of flying nocturnal bugs. MEE 11, 294–302. https://doi.org/10.1111/2041-210X.13339 (2020).
Google Scholar
Albrecht, M., Duelli, P., Muller, C., Kleijn, D. & Schmid, B. The Swiss agri-environment scheme enhances pollinator variety and plant reproductive success in close by intensively managed farmland. J. Appl. Ecol. 44, 813–822. https://doi.org/10.1111/j.1365-2664.2007.01306.x (2007).
Google Scholar
Hoiss, B., Gaviria, J., Leingärtner, A., Krauss, J. & Steffan-Dewenter, I. Mixed results of local weather and administration on plant variety and pollination sort in alpine grasslands. Divers. Distribut. 19, 386–395. https://doi.org/10.1111/j.1472-4642.2012.00941.x (2013).
Google Scholar
Di Giulio, M., Edwards, P. J. & Meister, E. Enhancing insect variety in agricultural grasslands: The roles of administration and panorama construction. J. Appl. Ecol. 38, 310–319 (2001).
Google Scholar
Bignal, E. M. & McCracken, D. I. Low-intensity farming techniques within the conservation of the countryside. J. Appl. Ecol. 33, 413–424. https://doi.org/10.2307/2404973 (1996).
Google Scholar
Humbert, J.-Y., Ghazoul, J. & Walter, T. Meadow harvesting methods and their impacts on subject fauna. Agricult. Ecosyst. Env. 130, 1–8. https://doi.org/10.1016/j.agee.2008.11.014 (2009).
Google Scholar
Krämer, B., Poniatowski, D. & Fartmann, T. Results of panorama and habitat high quality on butterfly communities in pre-alpine calcareous grasslands. Biol. Conserv. 152, 253–261. https://doi.org/10.1016/j.biocon.2012.03.038 (2012).
Google Scholar
Öckinger, E., Lindborg, R., Sjödin, N. E. & Bommarco, R. Panorama matrix modifies richness of crops and bugs in grassland fragments. Ecography 35, 259–267. https://doi.org/10.1111/j.1600-0587.2011.06870.x (2012).
Google Scholar
Johansen, L. et al. Conventional semi-natural grassland administration with heterogeneous mowing occasions enhances flower assets for pollinators in agricultural landscapes. Glob. Ecol. Cons. 18, e00619. https://doi.org/10.1016/j.gecco.2019.e00619 (2019).
Google Scholar
Hölscher-Lohmeyer, D., Braun, M. & Dieterlen, F. Die Säugetiere Baden–Württembergs 1. Allgemeiner Teil. Fledermäuse (Chiroptera) (Ulmer, 2003).
McAney, C. M. & Fairley, J. S. Evaluation of the weight loss program of the lesser horseshoe bat Rhinolophus hipposideros within the West of Eire. J. Zool. 217, 491–498. https://doi.org/10.1111/j.1469-7998.1989.tb02504.x (1989).
Google Scholar
Swift, S. M. Exercise patterns of Pipistrelle bats (Pipistrellus pipistrellus) in north-east Scotland. J. Zool. 190, 285–295. https://doi.org/10.1111/j.1469-7998.1980.tb01428.x (1980).
Google Scholar
Beck, S. D. Insect Photoperiodism (Elsevier Science, 2012).
Savopoulou-Soultani, M., Papadopoulos, N. T., Milonas, P. & Moyal, P. Abiotic elements and bug abundance. Psyche 2012, 1–2 (2012).
Google Scholar
Jansson, S., Malmqvist, E., Brydegaard, M., Åkesson, S. & Rydell, J. A Scheimpflug lidar used to look at insect swarming at a wind turbine. Ecol. Indic. 117, 106578 (2020).
Google Scholar
Olsson, O., Bruun, M. & Smith, H. G. Starling foraging success in relation to agricultural land-use. Ecography 25, 363–371 (2002).
Google Scholar
Pluciński, T., Żmihorski, M. & Pluciński, P. Influence of night-time crop harvesting on bat exercise in agricultural panorama. Zool. Ecol. 25, 1–7. https://doi.org/10.1080/21658005.2014.999501 (2015).
Google Scholar
Wikelski, M. et al. Odor of inexperienced leaf volatiles attracts white storks to freshly minimize meadows. Sci. Rep. 11, 12912. https://doi.org/10.1038/s41598-021-92073-7 (2021).
Google Scholar
Norberg, U. M. & Rayner, J. M. V. Ecological morphology and flight in bats (Mammalia, Chiroptera)–wing variations, flight efficiency, foraging technique and echolocation. Phil. Trans. R. Soc. Lond. B. 316, 337–419 (1987).
Google Scholar
Schnitzler, H.-U. & Kalko, E. Ok. V. Echolocation by insect-eating bats. Bioscience 51, 557–569 (2001).
Google Scholar
Owens, A. C. S. et al. Gentle air pollution is a driver of insect declines. Biol. Conserv. 241, 108259. https://doi.org/10.1016/j.biocon.2019.108259 (2020).
Google Scholar
Klein, N., Theux, C., Arlettaz, R., Jacot, A. & Pradervand, J.-N. Modeling the results of grassland administration depth on biodiversity. Ecol. Evol. 10, 13518–13529. https://doi.org/10.1002/ece3.6957 (2020).
Google Scholar
Samways, M. J. Insect conservation: An artificial administration method. Annu. Rev. Entomol. 52, 465–487. https://doi.org/10.1146/annurev.ento.52.110405.091317 (2006).
Google Scholar
Fuentes-Montemayor, E., Goulson, D., Cavin, L., Wallace, J. M. & Park, Ok. J. Fragmented woodlands in agricultural landscapes: The affect of woodland character and panorama context on bats and their insect prey. Agricult. Ecosyst. Env. 172, 6–15. https://doi.org/10.1016/j.agee.2013.03.019 (2013).
Google Scholar
Berzins, L. L., Morrissey, C. A., Howerter, D. W. & Clark, R. G. Conserving wetlands in agroecosystems can maintain aerial insectivore productiveness and survival. Can. J. Zool. 100, 617–629. https://doi.org/10.1139/cjz-2021-0204 (2022).
Google Scholar
González-Césped, C. et al. Results of city environmental situations and panorama construction on taxonomic and useful teams of bugs. Urb. For. Urb. Greening 58, 126902. https://doi.org/10.1016/j.ufug.2020.126902 (2021).
Google Scholar
Adams, A. M., Jantzen, M. Ok., Hamilton, R. M. & Fenton, M. B. Do you hear what I hear? Implications of detector choice for acoustic monitoring of bats. MEE 3, 992–998. https://doi.org/10.1111/j.2041-210X.2012.00244.x (2012).
Google Scholar
Parsons, Ok. N., Jones, G. & Greenaway, F. Swarming exercise of temperate zone microchiropteran bats: Results of season, time of evening and climate situations. J. Zool. (Lond.) 261, 257–264 (2003).
Google Scholar
Griffin, D. R., Webster, F. A. & Michael, C. R. The echolocation of flying bugs by bats. Anim. Behav. 8, 141–154 (1960).
Google Scholar
Wooden, S. N. Generalized Additive Fashions: An Introduction with R (Chapman and Corridor, 2006).
Google Scholar
Hartig, F. & Hartig, M. F. Bundle ‘DHARMa’. R package deal (2017).
[ad_2]
Source link