[ad_1]
Moleón, M. et al. Rethinking megafauna. Proc. R. Soc. B 287, 20192643 (2020).
Google Scholar
Martin, P. S. & Wright, H. E. Pleistocene Extinctions: The Seek for a Trigger (Yale Univ. Press, 1967).
Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).
Google Scholar
Smith, F. A., Elliott Smith, R. E., Lyons, S. Okay. & Payne, J. L. Physique measurement downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).
Google Scholar
Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. International late Quaternary megafauna extinctions linked to people, not local weather change. Proc. R. Soc. B 281, 20133254 (2014).
Google Scholar
Ubilla, M., Rinderknecht, A., Corona, A. & Perea, D. Mammals in final 30 to 7 ka interval (Late Pleistocene-Early Holocene) in Southern Uruguay (Santa Lucía River Basin): final occurrences, local weather, and biogeography. J. Mammal. Evol. 25, 291–300 (2018).
Google Scholar
Lemoine, R. T., Buitenwerf, R. & Svenning, J.-C. Megafauna extinctions within the late-Quaternary are linked to human vary enlargement, not local weather change. Anthropocene https://doi.org/10.1016/j.ancene.2023.100403 (2023).
Bergman, J. et al. Worldwide Late Pleistocene and Early Holocene inhabitants declines in extant megafauna are related to Homo sapiens enlargement fairly than local weather change. Nat. Commun. 14, 7679 (2023).
Google Scholar
Dirzo, R. et al. Defaunation within the Anthropocene. Science 345, 401–406 (2014).
Google Scholar
Doughty, C. E. et al. International nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 868–873 (2016).
Google Scholar
Karp, A. T., Religion, J. T., Marlon, J. R. & Staver, A. C. International response of fireside exercise to late Quaternary grazer extinctions. Science 374, 1145–1148 (2021).
Google Scholar
Bakker, E. S. et al. Combining paleo-data and fashionable exclosure experiments to evaluate the impression of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).
Google Scholar
Malhi, Y. et al. Megafauna and ecosystem perform from the Pleistocene to the Anthropocene. Proc. Natl Acad. Sci. USA 113, 838–846 (2016).
Google Scholar
Pringle, R. M. et al. Impacts of huge herbivores on terrestrial ecosystems. Curr. Biol. 33, R584–R610 (2023).
Google Scholar
Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the purposeful lack of long-distance seed-dispersal providers. Ecography 41, 153–163 (2018).
Google Scholar
Hobbs, N. T. Modification of ecosystems by ungulates. J. Wildl. Handle. 60, 695–713 (1996).
Google Scholar
Kristensen, J. A., Svenning, J.-C., Georgiou, Okay. & Malhi, Y. Can giant herbivores improve ecosystem carbon persistence? Traits Ecol. Evol. 37, 117–128 (2022).
Google Scholar
Schrama, M. et al. An built-in perspective to clarify nitrogen mineralization in grazed ecosystems. Perspect. Plant Ecol. Evol. Syst. 15, 32–44 (2013).
Google Scholar
Guldemond, R. & Van Aarde, R. A meta-analysis of the impression of African elephants on savanna vegetation. J. Wildl. Handle. 72, 892–899 (2008).
Keesing, F. & Younger, T. P. Cascading penalties of the lack of giant mammals in an African savanna. BioScience 64, 487–495 (2014).
Google Scholar
Ogada, D. L., Gadd, M. E., Ostfeld, R. S., Younger, T. P. & Keesing, F. Impacts of huge herbivorous mammals on chook range and abundance in an African savanna. Oecologia 156, 387–397 (2008).
Google Scholar
Religion, J. T., Rowan, J. & Du, A. Reply to Weihmann: fifty gazelles don’t equal an elephant, and different ecological misunderstandings. Proc. Natl Acad. Sci. USA 117, 3370–3371 (2020).
Google Scholar
Owen-Smith, R. N. Megaherbivores: The Affect of Very Massive Physique Dimension on Ecology (Cambridge Univ. Press, 1988).
Sitters, J. et al. Nutrient availability controls the impression of mammalian herbivores on soil carbon and nitrogen swimming pools in grasslands. Glob. Change Biol. 26, 2060–2071 (2020).
Google Scholar
Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impression on grassland plant range will depend on habitat productiveness and herbivore measurement. Ecol. Lett. 9, 780–788 (2006).
Google Scholar
Hansen, D. M. & Galetti, M. The forgotten megafauna. Science 324, 42–43 (2009).
Google Scholar
Augustine, D. J. & Frank, D. A. Results of migratory grazers on spatial heterogeneity of soil nitrogen properties in a grassland ecosystem. Ecology 82, 3149–3162 (2001).
Google Scholar
Knapp, A. Okay. et al. The keystone position of bison in North American tallgrass prairie: bison enhance habitat heterogeneity and alter a broad array of plant, group, and ecosystem processes. BioScience 49, 39–50 (1999).
Google Scholar
Stein, A., Gerstner, Okay. & Kreft, H. Environmental heterogeneity as a common driver of species richness throughout taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).
Google Scholar
Stein, A. & Kreft, H. Terminology and quantification of environmental heterogeneity in species-richness analysis. Biol. Rev. 90, 815–836 (2015).
Google Scholar
Tietje, M. et al. International variation in diversification charge and species richness are unlinked in crops. Proc. Natl Acad. Sci. USA 119, e2120662119 (2022).
Google Scholar
Mungi, N. A., Jhala, Y. V., Qureshi, Q., le Roux, E. & Svenning, J.-C. Megaherbivores present biotic resistance in opposition to alien plant dominance. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-023-02181-y (2023).
Biggs, C. R. et al. Does purposeful redundancy have an effect on ecological stability and resilience? A evaluation and meta-analysis. Ecosphere 11, e03184 (2020).
Google Scholar
Folke, C. Resilience: the emergence of a perspective for social–ecological programs analyses. Glob. Environ. Change 16, 253–267 (2006).
Google Scholar
Levine, N. M. et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to local weather change. Proc. Natl Acad. Sci. USA 113, 793–797 (2016).
Google Scholar
Senior, A. M., Viechtbauer, W. & Nakagawa, S. Revisiting and increasing the meta-analysis of variation: the log coefficient of variation ratio. Res. Synth. Strategies 11, 553–567 (2020).
Google Scholar
Viechtbauer, W. Conducting meta-analyses in R with the metafor bundle. J. Stat. Softw. 36, 1–48 (2010).
Google Scholar
Daskin, J. H. & Pringle, R. M. Does major productiveness modulate the oblique results of huge herbivores? A world meta-analysis. J. Anim. Ecol. 85, 857–868 (2016).
Google Scholar
Pringle, R. M., Younger, T. P., Rubenstein, D. I. & McCauley, D. J. Herbivore-initiated interplay cascades and their modulation by productiveness in an African savanna. Proc. Natl Acad. Sci. USA 104, 193–197 (2007).
Google Scholar
Bakker, E. S. & Svenning, J.-C. Trophic rewilding as a local weather change mitigation technique. Phil. Trans. R. Soc. https://doi.org/10.1098/rstb.2017.0432 (2018).
Schmitz, O. J. et al. Trophic rewilding can broaden pure local weather options. Nat. Clim. Chang. https://doi.org/10.1038/s41558-023-01631-6 (2023).
le Roux, E., van Veenhuisen, L. S., Kerley, G. I. H. & Cromsigt, J. P. G. M. Animal physique measurement distribution influences the ratios of vitamins equipped to crops. Proc. Natl Acad. Sci. USA 117, 22256–22263 (2020).
Google Scholar
McInturf, A. G., Pollack, L., Yang, L. H. & Spiegel, O. Vectors with autonomy: what distinguishes animal‐mediated nutrient transport from abiotic vectors? Biol. Rev. 94, 1761–1773 (2019).
Google Scholar
Hooker, H. D. Liebig’s regulation of the minimal in relation to basic organic issues. Science 46, 197–204 (1917).
Google Scholar
Menge, D. N. L. & Discipline, C. B. Simulated world adjustments alter phosphorus demand in annual grassland. Glob. Change Biol. 13, 2582–2591 (2007).
Google Scholar
Noy-Meir, I. Compensating progress of grazed crops and its relevance to the usage of rangelands. Ecol. Appl. 3, 32–34 (1993).
Google Scholar
McNaughton, S. J. Compensatory plant progress as a response to herbivory. Oikos 40, 329–336 (1983).
Google Scholar
Wardle, D. A., Bonner, Okay. I. & Barker, G. M. Linkages between plant litter decomposition, litter high quality, and vegetation responses to herbivores. Funct. Ecol. 16, 585–595 (2002).
Google Scholar
Wetzel, W. C., Kharouba, H. M., Robinson, M., Holyoak, M. & Karban, R. Variability in plant vitamins reduces insect herbivore efficiency. Nature 539, 425–427 (2016).
Google Scholar
Mcmillan, B. R., Cottam, M. R. & Kaufman, D. W. Wallowing conduct of American bison (Bos bison) in tallgrass prairie: an examination of alternate explanations. Am. Midl. Nat. 144, 159–167 (2000).
Google Scholar
Howison, R. A., Olff, H., van de Koppel, J. & Smit, C. Biotically pushed vegetation mosaics in grazing ecosystems: the battle between bioturbation and biocompaction. Ecol. Monogr. 87, 363–378 (2017).
Google Scholar
Schmitz, O. J. et al. Animals and the zoogeochemistry of the carbon cycle. Science 362, eaar3213 (2018).
Google Scholar
Andriuzzi, W. S. & Wall, D. H. Responses of belowground communities to giant aboveground herbivores: meta-analysis reveals biome-dependent patterns and important analysis gaps. Glob. Change Biol. 23, 3857–3868 (2017).
Google Scholar
Forbes, E. S. et al. Synthesizing the consequences of huge, wild herbivore exclusion on ecosystem perform. Funct. Ecol. 33, 1597–1610 (2019).
Google Scholar
Jia, S. et al. International sign of top-down management of terrestrial plant communities by herbivores. Proc. Natl Acad. Sci. USA 115, 6237–6242 (2018).
Google Scholar
Potter, A. B. & Pringle, R. M. in The Equids: A Suite of Splendid Species (eds Prins, H. H. T. & Gordon, I. J.) 171–207 (Springer, 2023).
Jarman, P. J. The social organisation of antelope in relation to their ecology. Behaviour 48, 215–267 (1974).
Google Scholar
Coverdale, T. C. et al. Elephants within the understory: opposing direct and oblique results of consumption and ecosystem engineering by megaherbivores. Ecology 97, 3219–3230 (2016).
Google Scholar
Ripple, W. J. et al. Standing and ecological results of the world’ s largest carnivores. Science 343, 151–164 (2014).
Google Scholar
Faurby, S. & Svenning, J.-C. Historic and prehistoric human-driven extinctions have reshaped world mammal range patterns. Divers. Distrib. 21, 1155–1166 (2015).
Google Scholar
Laundre, J. W., Hernandez, L. & Ripple, W. J. The panorama of worry: ecological implications of being afraid. Open Ecol. J. 3, 1–7 (2010).
Google Scholar
Lengthy, R. A., Wambua, A., Goheen, J. R., Palmer, T. M. & Pringle, R. M. Climatic variation modulates the oblique results of huge herbivores on small‐mammal habitat use. J. Anim. Ecol. 86, 739–748 (2017).
Google Scholar
Davies, A. B. & Asner, G. P. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Traits Ecol. Evol. 29, 681–691 (2014).
Google Scholar
Heidrich, L. et al. Heterogeneity–range relationships differ between and inside trophic ranges in temperate forests. Nat. Ecol. Evol. 4, 1204–1212 (2020).
Google Scholar
Yang, Z. et al. The impact of environmental heterogeneity on species richness will depend on group place alongside the environmental gradient. Sci. Rep. 5, 15723 (2015).
Google Scholar
Barzan, F. R., Bellis, L. M. & Dardanelli, S. Livestock grazing constrains chook abundance and species richness: a worldwide meta-analysis. Primary Appl. Ecol. 56, 289–298 (2021).
Google Scholar
Tews, J. et al. Animal species range pushed by habitat heterogeneity/range: the significance of keystone constructions. J. Biogeogr. 31, 79–92 (2004).
Google Scholar
Estrada-Carmona, N., Sánchez, A. C., Remans, R. & Jones, S. Okay. Complicated agricultural landscapes host extra biodiversity than easy ones: a worldwide meta-analysis. Proc. Natl Acad. Sci. USA 119, e2203385119 (2022).
Google Scholar
Stark, J., Lehman, R., Crawford, L., Enquist, B. J. & Blonder, B. Does environmental heterogeneity drive purposeful trait variation? A take a look at in montane and alpine meadows. Oikos 126, 1650–1659 (2017).
Google Scholar
Hedberg, C. P., Lyons, S. Okay. & Smith, F. A. The hidden legacy of megafaunal extinction: lack of purposeful range and resilience over the Late Quaternary at Corridor’s Cave. Glob. Ecol. Biogeogr. 31, 294–307 (2022).
Google Scholar
Leimu, R. & Koricheva, J. What determines the quotation frequency of ecological papers? Traits Ecol. Evol. 20, 28–32 (2005).
Google Scholar
Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias within the GBIF database and its impact on modeling species’ geographic distributions. Ecol. Inform. 19, 10–15 (2014).
Google Scholar
Wang, L. et al. Tree cowl and its heterogeneity in pure ecosystems is linked to giant herbivore biomass globally. One Earth https://doi.org/10.1016/j.oneear.2023.10.007 (2023).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial decision local weather surfaces for world land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Zhao, M., Heinsch, F. A., Nemani, R. R. & Operating, S. W. Enhancements of the MODIS terrestrial gross and internet major manufacturing world knowledge set. Distant Sens. Environ. 95, 164–176 (2005).
Google Scholar
Trabucco, A. & Zomer, R. International aridity index and potential evapotranspiration (ET0) local weather database v.3. Figshare https://doi.org/10.6084/M9.FIGSHARE.7504448.V4 (2022).
Hengl, T. et al. SoilGrids250m: world gridded soil data based mostly on machine studying. PLoS ONE 12, e0169748 (2017).
Google Scholar
Schweiger, A. H., Boulangeat, I., Conradi, T., Davis, M. & Svenning, J.-C. The significance of ecological reminiscence for trophic rewilding as an ecosystem restoration method. Biol. Rev. 94, 1–15 (2019).
Google Scholar
Value, J. N. et al. Evolutionary historical past of grazing and sources decide herbivore exclusion results on plant range. Nat. Ecol. Evol. 6, 1290–1298 (2022).
Google Scholar
Doughty, C. E., Wolf, A. & Malhi, Y. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat. Geosci. 6, 761–764 (2013).
Google Scholar
Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).
Google Scholar
Svenning, J.-C. et al. Science for a wilder Anthropocene: synthesis and future instructions for trophic rewilding analysis. Proc. Natl Acad. Sci. USA 113, 898–906 (2016).
Google Scholar
Lundgren, E. J et al. Useful traits – not nativeness – form the consequences of huge mammalian herbivores on plant communities. Science https://doi.org/10.1126/science.adh2616 (2024).
Lundgren, E. J. et al. Useful traits of the world’s late Quaternary large-bodied avian and mammalian herbivores. Sci. Information 8, 17 (2021).
Google Scholar
Westgate, M. J. revtools: an R bundle to assist article screening for proof synthesis. Res. Syn. Meth. 10, 606–614 (2019).
Google Scholar
Eldridge, D. J., Ding, J. & Travers, S. Okay. Feral horse exercise reduces environmental high quality in ecosystems globally. Biol. Conserv. 241, 108367 (2020).
Google Scholar
Sitters, J., Kimuyu, D. M., Younger, T. P., Claeys, P. & Olde Venterink, H. Damaging results of cattle on soil carbon and nutrient swimming pools reversed by megaherbivores. Nat. Maintain. 3, 360–366 (2020).
Google Scholar
Hessman, F. V. Figure_Calibration (Institut für Astrophysik, Georg-August-Universität-Göttingen, 2009).
Baston, D. exactextractr: Quick Extraction from Raster Datasets utilizing Polygons (CRAN, 2022).
Hijmans, R. terra: Spatial Information Evaluation (CRAN, 2023).
R Core Group. R: A Language and Surroundings for Statistical Computing (R Basis for Statistical Computing, 2022).
Hedges, L. V. Distribution concept for Glass’s estimator of impact measurement and associated estimators. J. Educ. Stat. 6, 107–128 (1981).
Durlak, J. A. Easy methods to choose, calculate, and interpret impact sizes. J. Pediatr. Psychol. 34, 917–928 (2009).
Google Scholar
Cohen, J. Statistical Energy Evaluation for the Behavioral Sciences (Routledge, 1988).
Nakagawa, S. et al. Meta-analysis of variation: ecological and evolutionary functions and past. Strategies Ecol. Evol. 6, 143–152 (2015).
Google Scholar
McGrath, S., Zhao, X., Steele, R. & Benedetti, A. estmeansd: Estimating the Pattern Imply and Customary Deviation from Generally Reported Quantiles in Meta-Evaluation (CRAN, 2022).
López-López, J. A., Marín-Martínez, F., Sánchez-Meca, J., Van den Noortgate, W. & Viechtbauer, W. Estimation of the predictive energy of the mannequin in mixed-effects meta-regression: a simulation research. Br. J. Math. Stat. Psychol. 67, 30–48 (2014).
Google Scholar
Dhakal, C. P. Coping with outliers and influential factors whereas becoming regression. J. Inst. Sci. Technol. 22, 61–65 (2017).
Google Scholar
Prepare dinner, R. D. in Worldwide Encyclopedia of Statistical Science (ed. Lovric, M.) 301–302 (Springer, 2011).
Sterne, J. A. C. & Egger, M. Funnel plots for detecting bias in meta-analysis: pointers on selection of axis. J. Clin. Epidemiol. 54, 1046–1055 (2001).
Google Scholar
Sterne, J. A. C. & Egger, M. in Publication Bias in Meta-Evaluation (eds Rothstein, H. R. et al.) 99–110 (John Wiley & Sons, 2005).
Nakagawa, S. et al. Strategies for testing publication bias in ecological and evolutionary meta-analyses. Strategies Ecol. Evol. 13, 4–21 (2022).
Google Scholar
Trepel, J. & Lundgren, E. Information and supplementary recordsdata. Figshare https://doi.org/10.6084/m9.figshare.24234913.v2 (2023).
[ad_2]
Source link