[ad_1]
van Klink, R. et al. Meta-analysis reveals declines in terrestrial however will increase in freshwater insect abundances. Science 368, 417–420 (2020).
Google Scholar
He, F. et al. The worldwide decline of freshwater megafauna. Glob. Chang. Biol. 25, 3883–3892 (2019).
Google Scholar
Wu, T. et al. Local weather monitoring by freshwater fishes means that fish variety in temperate lakes could also be more and more threatened by local weather warming. Divers. Distrib. 29, 300–315 (2022).
Google Scholar
Dudgeon, D. A number of threats imperil freshwater biodiversity within the Anthropocene. Curr. Biol. 29, 960–R967 (2019).
Google Scholar
McRae, L., Deinet, S. & Freeman, R. The variety-weighted residing planet index: controlling for taxonomic bias in a worldwide biodiversity indicator. PLoS ONE 12, e0169156 (2017).
Google Scholar
Reid, A. J. et al. Rising threats and chronic conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).
Google Scholar
Ceballos, G. et al. Accelerated trendy human-induced species losses: coming into the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).
Google Scholar
Mazor, T. et al. International mismatch of coverage and analysis on drivers of biodiversity loss. Nat. Ecol. Evol. 2, 1071–1074 (2018).
Google Scholar
Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: sample, course of, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).
Google Scholar
Tittensor, D. P. & Worm, B. A neutral-metabolic idea of latitudinal biodiversity. Glob. Ecol. Biogeogr. 25, 630–641 (2016).
Google Scholar
IPCC. Synthesis Report. Contribution of Working Teams I, II and III to the Fifth Evaluation Report of the Intergovernmental Panel on Local weather Change (eds Core Writing Group, Pachauri, R. Ok. & Meyer, L. A.] (IPCC, 014).
Hallmann, C. A. et al. Greater than 75 p.c decline over 27 years in whole flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
Google Scholar
Spooner, F. E. B., Pearson, R. G. & Freeman, R. Fast warming is related to inhabitants decline amongst terrestrial birds and mammals globally. Glob. Chang. Biol. 24, 4521–4531 (2018).
Google Scholar
O’Gorman, E. J. et al. Temperature results on fish manufacturing throughout a pure thermal gradient. Glob. Chang. Biol. 22, 3206–3220 (2016).
Google Scholar
O’Gorman, E. J. et al. A easy mannequin predicts how warming simplifies wild meals webs. Nat. Clim. Change 9, 611–616 (2019).
Google Scholar
Arneth, A. et al. Publish-2020 biodiversity targets must embrace local weather change. Proc. Natl Acad. Sci. USA 117, 30882–30891 (2020).
Google Scholar
O’Gorman, E. J. et al. Local weather change and geothermal ecosystems: pure laboratories, sentinel techniques, and future refugia. Glob. Chang. Biol. 20, 3291–3299 (2014).
Google Scholar
WWF Dwelling Planet Report 2022: Constructing a Nature- Constructive Society. (eds Almond, R. E. A., Grooten, M., Juffe Bignoli, D. & Petersen, T.) (WWF, 2022).
Helmus, M. R., Mahler, D. L. & Losos, J. B. Island biogeography of the Anthropocene. Nature 513, 543–546 (2014).
Google Scholar
Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. Ok. & Triantis, Ok. A. Island biogeography: taking the lengthy view of natures laboratories. Science 357, eaam832 (2017).
Google Scholar
Lewthwaite, J. M. M., Debinski, D. M. & Kerr, J. T. Excessive group turnover and dispersal limitation relative to speedy local weather change. Glob. Ecol. Biogeogr. 26, 459–471 (2017).
Google Scholar
Mantyka‐Pringle, C. S., Martin, T. G., Moffatt, D. B., Linke, S. & Rhodes, J. R. Understanding and predicting the mixed results of local weather change and land‐use change on freshwater macroinvertebrates and fish. J. Appl. Ecol. 51, 572–581 (2014).
Google Scholar
Farneda, F. Z. et al. Predicting biodiversity loss in island and countryside ecosystems by way of the lens of taxonomic and purposeful biogeography. Ecography 43, 97–106 (2020).
Google Scholar
Fernández-Palacios, J. M. et al. Scientists’ warning – The excellent biodiversity of islands is in peril. Glob. Ecol. Conserv. 31, e01847 (2021).
Google Scholar
Weeks, B. C., Gregory, N. & Naeem, S. Fowl assemblage vulnerability is determined by the range and biogeographic histories of islands. Proc. Natl Acad. Sci. USA 113, 10109–10114 (2016).
Google Scholar
Wang, J., Pan, F., Soininen, J., Heino, J. & Shen, J. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale area experiments. Nat. Commun. 7, 1–9 (2016).
Google Scholar
Yvon-Durocher, G., Montoya, J. M., Trimmer, M. & Woodward, G. Warming alters the scale spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob. Chang. Biol. 17, 1681–1694 (2011).
Google Scholar
O’Gorman, E. J. et al. Surprising modifications in group measurement construction in a pure warming experiment. Nat. Clim. Chang. 7, 659–663 (2017).
Google Scholar
Junker, J. R. et al. Useful resource provide governs the obvious temperature dependence of animal manufacturing in stream ecosystems. Ecol. Lett. 23, 1809–1819 (2020).
Google Scholar
Nelson, D. et al. Experimental whole-stream warming alters group measurement construction. Glob. Chang. Biol. 23, 2618–2628 (2017).
Google Scholar
Patrick, C. J. et al. Precipitation and temperature drive continental-scale patterns in stream invertebrate manufacturing. Sci. Adv. 5, eaav2348 (2019).
Google Scholar
Tiegs, S. D. et al. International patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci. Adv. 5, eaav2348 (2019).
Google Scholar
Jackson, M. C. et al. Meals internet properties differ with local weather and land use in South African streams. Funct. Ecol. 34, 1653–1665 (2020).
Google Scholar
Hessen, D. O., Andersen, T., Larsen, S., Skjelkvåle, B. L. & De Wit, H. A. Nitrogen deposition, catchment productiveness, and local weather as determinants of lake stoichiometry. Limnol. Oceanogr. 54, 2520–2528 (2009).
Google Scholar
Marcarelli, A. M., Baxter, C. V., Mineau, M. M. & Corridor, R. O. Jr Amount and high quality: unifying meals internet and ecosystem views on the position of useful resource subsidies in freshwaters. Ecology 92, 1215–1225 (2011).
Google Scholar
Woodward, G. et al. Continental-scale results of nutrient air pollution on stream ecosystem functioning. Science 336, 1438–1440 (2012).
Google Scholar
Perkins, D. M. et al. Environmental warming and biodiversity-ecosystem functioning in freshwater microcosms: partitioning the results of species id, richness and metabolisms. Adv. Ecol. Res. 43, 177–209 (2010).
Google Scholar
Loreau, M. et al. Biodiversity and ecosystem functioning: present data and future challenges. Science 294, 804–808 (2001).
Google Scholar
Reiss, J., Bridle, J. R., Montoya, J. M. & Woodward, G. Rising horizons in biodiversity and ecosystem functioning analysis. Traits Ecol. Evol. 24, 505–514 (2009).
Google Scholar
Jamoneau, A. et al. Stream diatom biodiversity in islands and continents—A world perspective on results of space, isolation and atmosphere. J. Biogeogr. 49, 2156–2168 (2022).
Google Scholar
Brittain, J. E. et al. Ecological correlates of riverine diatom and macroinvertebrate alpha and beta variety throughout Arctic Fennoscandia. Freshw. Biol. 67, 49–63 (2022).
Google Scholar
Lento, Jennifer et al. Range of diatoms, benthic macroinvertebrates, and fish varies in response to totally different environmental correlates in Arctic rivers throughout North America. Freshw. Biol. 67, 95–115 (2022).
Google Scholar
Soininen, J., Heino, J. & Wang, J. A meta-analysis of nestedness and turnover elements of beta variety throughout organisms and ecosystems. Glob. Ecol. Biogeogr. 27, 96–109 (2018).
Google Scholar
Grey, C. et al. Restoration and nonrecovery of freshwater meals webs from the results of acidification. Adv. Ecol. Res. 55, 475–534 (2016).
Google Scholar
DS – Danish Normal 221. Willpower of nitrogen content material after oxydation by peroxodisulphate. (Dansk Requirements Forlag, 1975).
Mutinova, P. T. et al. Benthic diatom communities in city streams and the position of riparian buffers. Water 12, 2799 (2020).
Google Scholar
Tuck, S. L. et al. MODISTools – downloading and processing MODIS remotely sensed information in R. Ecol. Evol. 4, 4658–4668 (2014).
Google Scholar
Oksanen, J. et al. Package deal ‘vegan’ Title Group Ecology Package deal Model 2.5-6. (2019).
Baselga, A. & Orme, C. D. L. Betapart: an R package deal for the research of beta variety. Strategies Ecol. Evol. 3, 808–812 (2012).
Google Scholar
Gómez-Rodríguez, C. & Baselga, A. Variation amongst European beetle taxa in patterns of distance decay of similarity suggests a serious position of dispersal processes. Ecography 41, 1825–1834 (2018).
Google Scholar
[ad_2]
Source link